Problem

Source: 2015 Taiwan TST Round 3 Quiz 1 Problem 1

Tags: Taiwan, inequalities, Taiwan TST 2015, algebra



Let $x,y$ be the positive real numbers with $x+y=1$, and $n$ be the positive integer with $n\ge2$. Prove that \[\frac{x^n}{x+y^3}+\frac{y^n}{x^3+y}\ge\frac{2^{4-n}}{5}\]