Given a real number $t\neq -1$. Find all functions $f:\mathbb{R}\rightarrow\mathbb{R}$ such that \[(t+1)f(1+xy)-f(x+y)=f(x+1)f(y+1)\] for all $x,y\in\mathbb{R}$.
Problem
Source: 2015 Taiwan TST Round 2 Quiz 3 Problem 2
Tags: Taiwan, function, algebra, Taiwan TST 2015
12.07.2015 15:48
wanwan4343 wrote: Given a real number $t\neq -1$. Find all functions $f:\mathbb{R}\rightarrow\mathbb{R}$ such that \[(t+1)f(1+xy)-f(x+y)=f(x+1)f(y+1)\] for all $x,y\in\mathbb{R}$. Let $P(x,y)$ be the assertion $(t+1)f(1+xy)-f(x+y)=f(x+1)f(y+1)$ Let $a=f(1)$ The only constant solutions are $\boxed{\text{S1 : }f(x)=0\text{ }\forall x}$ and $\boxed{\text{S2 : }f(x)=t\text{ }\forall x}$ So let us from now look only for non constant solutions. If $f(1)=0$ : $P(x,0)$ $\implies$ contradiction (since non constant) and so $f(1)\ne 0$ and let then $a=\frac 1{f(1)}$ $P(x,0)$ $\implies$ $f(x+1)=(t+1)-af(x)$ and $P(x,y)$ may be written as New assertion $Q(x,y)$ : $-a(t+1)f(xy)-f(x+y)=-a(t+1)f(x)-a(t+1)f(y)+a^2f(x)f(y)$ $Q(x,y)$ $\implies$ $-a^2(t+1)f(xy)-af(x+y)=-a^2(t+1)f(x)-a^2(t+1)f(y)+a^3f(x)f(y)$ $Q(x+1,y)$ $\implies$ $-a(t+1)f(xy+y)-(t+1)+af(x+y)=-a(t+1)^2+a^2(t+1)f(x)-a(t+1)f(y)+a^2(t+1)f(y)-a^3f(x)f(y)$ Adding, we get $f(xy+y)=-af(xy)+f(y)-\frac 1a+(t+1)$ And so $f(x+y)=-af(x)+f(y)+t+1-\frac 1a$ $\forall x$, $\forall y\ne 0$. Since $f(x)$ is non constant, this implies $a=-1$ (and so $f(0)=-t-2$ looking at $P(0,0)$) and New assertion $R(x,y)$ : $f(x+y)+t+2=(f(x)+t+2)+(f(y)+t+2)$ $\forall x$, $\forall y\ne 0$, still true when $y=0$ Then $Q(x,y)$ becomes $(t+1)(f(xy)+t+2)=(f(x)+t+2)(f(y)+t+2)$ Setting $g(x)=\frac{f(x)+t+2}{t+1}$, these two lines become $g(x+y)=g(x)+g(y)$ and $g(xy)=g(x)g(y)$ and the classical unique non constant solution $g(x)=x$ And so $\boxed{\text{S3 : }f(x)=(t+1)x-(t+2)\text{ }\forall x}$ which indeed is a solution
12.07.2015 16:03
wanwan4343 wrote: Given a real number $t\neq -1$. Find all functions $f:\mathbb{R}\rightarrow\mathbb{R}$ such that \[(t+1)f(1+xy)-f(x+y)=f(x+1)f(y+1)\] for all $x,y\in\mathbb{R}$. http://www.artofproblemsolving.com/community/u224483h1077649p4721538
19.03.2023 16:26
The only solutions are $f\equiv 0, f\equiv t, f(x) = (t+1)x - (t+2)$. These work. Now we show they are the only solutions. Clearly $f\equiv 0$ works, so assume $f$ isn't identically zero. Let $f(1) = a$. $P(x,0): a(t+1) - f(x) = af(x+1)$. Setting $x$ such that $f(x)\ne 0$, we get $a\ne 0$. From $P(x,0)$ again, we have $f(x+1) = t+1 - f(x)/a$. Using this identity, we get \begin{align*} f(2) = t \\ f(3) = t + 1 - t/a \\ f(4) = t+1 - (t+1)/a + t/a^2 \\ f(5) = t+1 - (t+1)/a + (t+1)/a^2 - t/a^3 \\ \end{align*} $P(2,2): (t+1)f(5) - f(4) = f(3)^2$. After multiplying both sides by $a^3$, we get \[a^3(t^2 + t) - a^2(t^2 + t) + a(t^2 + t + 1) - (t^2 + t) = a^3(t^2 + 2t + 1) - 2(t^2 + t) a^2 + a\cdot t^2\] Rearranging this, we get $a^3 (t+1) - a^2(t^2 + t) - a(t+1) - (t^2 + t) = (a-1)(a+1)(a-t)(t+1)$, so we have $a\in \{-1,1,t\}$. Case 1: $a=1$ and $t\ne 1$. Then $f(x) + f(x+1) = t+1$. Let $t+1 = m$. $P(x,y) + P(x,y+1): m(f(xy + 1) + f(xy + x + 1)) = mf(x+1) + m$, so\[f(xy + 1) + f(xy + x + 1) = f(x+1) + 1\]Setting $y = 1/x$ for $x\ne 0$ gives $f(x+2) + m-1 = f(x+1) + 1$, so $2m - f(x+1) - 1 = f(x+1) + 1$, which gives that $f(x+1) = m-1$. This implies $f\equiv t$, so $t=1$, contradiction. Case 2: $a = t$ (which covers the $a=1$ and $t=1$ case). $P(x,0)$ gives $t(t+1) - f(x) = tf(x+1)$. $t\cdot P(x,y+1): t(t+1) f(xy + x + 1) - t(t+1) + f(x+y) = f(x+1) (t(t+1) - f(y+1))$. Adding this to the original FE gives $(t+1)(f(xy + 1) +t f(xy + x + 1)) - t(t+1) = f(x+1)\cdot t(t+1)$. Dividing both sides by $t+1$,\[f(xy + 1)+t f(xy + x +1) = t(f(x+1) + 1)\]Setting $y = 1/x$ for $x\ne 0$ gives $t + tf(x+2) = t(f(x+1) + 1) $, so (since $a\ne 0, t\ne 0$), $f(x+1) = f(x+2)$, which means $f(x)= f(x+1)$ for all reals $x$. Using this in $P(x,0)$ gives $(t+1)f(x) = t(t+1)$, so $f(x) = t$. Case 3: $a = -1$. $P(x,0)$ gives that \[f(x+1) - f(x) = t+1\] $P(x,y+1) - P(x,y): (t+1)(f(xy+ x + 1) - f(xy + x)) = (t+1)(f(x+1) + 1)$. Dividing both sides by $t+1$ gives \[f(xy + x + 1) - f(xy+ 1) = f(x+1) + 1\]Setting $y\to y/x$ for any $x\ne 0$ gives \[f(x+y+1) = f(x+1) + f(y+1) + 1\]This is also clearly true for $x=0$ since $f(1) = -1$. This implies $f(x+y) = f(x) + f(y) + t+2$. Setting $g(x) = f(x) + (t+2)$, we find $g(x) + g(y) = g(x+y)$, so $g$ is additive. Note that $g(0) = 0, g(1) = t+1$. The original FE becomes \[(t+1)(g(xy) - 1) - g(x+y) + (t+2) = (g(x) - 1)(g(y) - 1)\] Simplifying, we have $(t+1)g(xy) - g(x) - g(y) + 1 = g(x)g(y) - g(x) - g(y) + 1$, so $(t+1)g(xy) = g(x)g(y)$. Hence $(t+1) g(x^2) = g(x)^2 \ge 0$, which means either $g(x)\ge 0\forall x\ge 0$ or $g(x)\le 0\forall x\ge 0$, so $g$ is bounded on some interval. Thus, $g$ is linear, so $g(x) = (t+1)x$. This gives $f(x) = (t+1)x - (t+2)$, as needed.
26.07.2024 22:33