Let $ABC$ be an acute triangle , with $AB \neq AC$ and denote its orthocenter by $H$ . The point $D$ is located on the side $BC$ and the circumcircles of the triangles $ABD$ and $ACD$ intersects for the second time the lines $AC$ , respectively $AB$ in the points $E$ respectively $F$. If we denote by $P$ the intersection point of $BE$ and $CF$ then show that $HP \parallel BC$ if and only if $AD$ passes through the circumcenter of the triangle $ABC$.
Problem
Source: Romania JBMO TST 2015 Day 3 Problem 3
Tags: geometry, orthocenter, circles, parallel, circumcircle