Let $AB$ be a chord of a circle $\Gamma$ and let $C$ be a point on the segment $AB$. Let $r$ be a line through $C$ which intersects $\Gamma$ at the points $D,E$; suppose that $D,E$ lie on different sides with respect to the perpendicular bisector of $AB$. Let $\Gamma_D$ be the circumference which is externally tangent to $\Gamma$ at $D$ and touches the line $AB$ at $F$. Let $\Gamma_E$ be the circumference which is externally tangent to $\Gamma$ at $E$ and touches the line $AB$ at $G$. Prove that $CA=CB$ if and only if $CF=CG$.
Problem
Source: Italian mathematical olympiad 2015, problem 5
Tags: geometry, perpendicular bisector