Problem

Source: 2015 Taiwan TST Round 3 Quiz 2 P2

Tags: function, number theory, algebra, induction



Let $\mathbb{Q}^+$ be the set of all positive rational numbers. Find all functions $f:\mathbb{Q}^+\rightarrow \mathbb{Q}^+$ satisfying $f(1)=1$ and \[ f(x+n)=f(x)+nf(\frac{1}{x}) \forall n\in\mathbb{N},x\in\mathbb{Q}^+\]