Problem

Source: Canadian mathematical olympiad 2015

Tags: geometric inequality, inequalities, geometry



Let $ABC$ be an acute-angled triangle with altitudes $AD,BE,$ and $CF$. Let $H$ be the orthocentre, that is, the point where the altitudes meet. Prove that \[\frac{AB\cdot AC+BC\cdot CA+CA\cdot CB}{AH\cdot AD+BH\cdot BE+CH\cdot CF}\leq 2.\]