Let $\triangle ABC$ be an acute-angled triangle, and let $D$ be the foot of the altitude from $C.$ The angle bisector of $\angle ABC$ intersects $CD$ at $E$ and meets the circumcircle $\omega$ of triangle $\triangle ADE$ again at $F.$ If $\angle ADF = 45^{\circ}$, show that $CF$ is tangent to $\omega .$
Problem
Source:
Tags: geometry, EGMO, Triangle, tangent, EGMO 2015
16.04.2015 16:30
16.04.2015 16:49
My solution: Let $ S \in BF $ be the incenter of $ \triangle BCD $ . From $ \angle FDA=45^{\circ} $ we get $ DF $ is the external bisector of $ \angle BDC $ , so $ F $ is the B-excenter of $ \triangle BCD \Longrightarrow C, D, F, S $ are concyclic , hence $ \angle DAE=\angle DFS=\angle DCS \Longrightarrow AE \perp CS \Longrightarrow AE \parallel CF $ . ... $ (\star) $ Since $ \angle FEA=\angle FDA=45^{\circ}, \angle AFE=90^{\circ} $ , so we get the center of $ \omega $ is the midpoint $ T $ of $ AE $ and $ TF \perp AE $ , hence combine with $ (\star) $ we get $ CF $ is tangent to $ \omega $ at $ F $ . Q.E.D ____________________________________________________________ EDIT : simpler solution ( thanks for navredras pointed me out ) After we get $ C, D, F, S $ are concyclic we can finish the proof as following : From $ \angle EFC=\angle SDC=45^{\circ}=\angle EDF $ we get $ CF $ is tangent to $ \omega $ at $ F $ . Done
16.04.2015 19:10
We easily get that $DF$ is the angle bisector of $\angle EDA$ so $F$ is equidistant from $AB$ and $CD$. $F$ also belongs to angle bisector of $\angle ABC$ so it is also equidistant from $AB$ and $BC$. From this we have that $F$ is the $B$-excenter of triangle $BCD$. From this we get $\angle BFC= 180 - \angle CBF + \angle BCE + \angle ECF = 45 $ so we are finished.
16.04.2015 20:11
Let $\angle ABC=x$ and $\angle EAC=y.$ Since angle bisectors of $\angle ADC$ and $\angle ABC$ intersect at point $F$, obviously $F $ is the excenter of the triangle $BDC$. Hence $\angle DCF 45^0+x/2$(because $\angle BCD=90^0-x $. By easy angle chasing we obtain that $\angle ECA=45^0+x/2-y$. Which leads to $\angle ACF=y$. And $ AE $ parallel to $ CF $. So $\angle AEF=\angle EFC=45^0=\angle EDF$. Which clearly shows that $ CF $ tangent to $ w $
16.04.2015 22:38
my solution = since $\angle ADF=90-\angle CDB$ thus $DF$ is external angle bisector of $\angle CDB$ thus $F$ is $B$-excentre of triangle $CBD$. hence $\angle DCF=90-\frac{\angle BCD}{2}=135-\frac{\angle B}{2}$ so,$\angle BFC=45=\angle EDF=\angle EAF$ as $A,D,E,F$ are concyclic. and hence $CF$ is tangent to $\omega$ so we are done
17.04.2015 21:57
Suppose $AF$ intersects $BC$ at $A'$. $BA=BA'$ and $BF\perp AA'$, so $\angle EA'F=\angle EAF=\angle ADF=45$, i.e. $A'FE$ is a 45-45-90 triangle. Angle chasing yields $\angle CAE=\angle CEA$, implying that $CF$ is the perpendicular bisector of $A'E$. Thus $\angle CFE=45=\angle FDE$, i.e. $CF$ is tangent to $\omega$.
17.04.2015 22:15
Let $CM$ be the angle bisector of $\angle DCB$ with $M \in AB$. Furthermore let $I$ be the incenter of $\triangle DBC$ and $S = AE \cap CM$. We know that $\angle FEA = 45^{\circ}$ then $\angle AEB = 135^{\circ}$ which means $$\dfrac{\angle ABC}{2} = \angle ABE = 180^{\circ} - 135^{\circ} - \angle EAB = 45^{\circ} - \angle EAB.$$ Then $\angle ABC = 90^{\circ} - 2\angle EAB$ implying $\angle DCB = 2\angle EAB$. Now since $CM$ is the angle bisector of $\angle DCB$ we know $\angle DCM = \angle EAB$. Therefore $\triangle ADE \sim \triangle CDM$ so we can rotate $\triangle ADE$ 90 degrees clockwise around $D$ and then do a homothety to get $\triangle CDM$. This means that any two corresponding lines in the two triangles are perpendicular, in particular $AE \perp CM$. Combining this with $CD \perp AB$ we easily get quadrilateral $ADSC$ is cyclic. This gives $CE \cdot ED = AE \cdot ES$. Furthermore since we know $\angle ESI = EFA = 90^{\circ}$ quadrilateral $FAIS$ is cyclic as well. This gives $FE \cdot EI = AE \cdot ES$. Therefore $CE \cdot ED = FE \cdot EI$ and so quadrilateral $FDIC$ is cyclic. This gives $\angle EFC = \angle IFC = \angle IDC = 45^{\circ}$ because $I$ is the incenter of $\triangle DCB$. Therefore $\angle EFC = \angle FAE = 45^{\circ}$ which gives $CF$ is tangent to the circumcircle of $\triangle AED$ as desired.
17.04.2015 23:24
Construct $X$ on $BC$ such that the circle with radius $DE$ and center $E$ is the incircle of $\triangle ABX$. Since $\angle BEA = 135^\circ$, we have that \[\angle BXA = 180^\circ - 2(\angle EBA + \angle EAB) = 180^\circ - 2 \cdot 45^\circ = 90^\circ.\]So $BXFA$ is cyclic, so $\angle FAX = \angle FBX = \angle FBA = \angle FXA \implies FX = FA = FE$. Thus $\angle XCE = 90^\circ - \angle CBD = \angle XAB = \angle XFB$, so $CXEF$ is cyclic. So we have $\angle CFE = \angle BXE = \tfrac{\angle AXB}{2} = 45^\circ$, so $\angle CFE = \angle FAE \implies CF$ is tangent to $\omega$, as desired.
17.04.2015 23:34
Hmm, AoPS does not appear to support opacity [asy][asy] import olympiad; import cse5; size(8cm); defaultpen(fontsize(9pt)); pair A = dir(0); pair B = dir(180); pair F = dir(65); pair D = extension(A, B, F, dir(205)); pair K = F*F; pair C = extension(D, D+dir(90), B, K); pair E = extension(B, F, C, D); filldraw(unitcircle, palecyan+opacity(0.2), heavyblue); filldraw(circumcircle(A, D, E), palered+opacity(0.2), red+dotted); filldraw(CP(E,D), pink+opacity(0.2), magenta); draw(arc(F,abs(E-F),170,310), orange+dashed); draw(K--A--B--C--D, deepcyan); draw(C--A, deepcyan+dashed); draw(B--F--A, deepgreen); draw(F--D, deepgreen); draw(C--F, mediumred); dot("$A$", A, dir(A)); dot("$B$", B, dir(B)); dot("$F$", F, dir(F)); dot("$D$", D, dir(225)); dot("$K$", K, dir(K)); dot("$C$", C, dir(C)); dot("$E$", E, dir(165)); [/asy][/asy] Let $BC$ meet the circle with diameter $\overline{AB}$ at $K$ By the conditions of the problem, we have $FK = FE = FA$. Thus $E$ is the incenter of $\triangle KBA$. By angle chasing, we can now show that $\angle KFE = 90^{\circ} - \frac12 \angle KEF = \angle BCD$, so $KCFE$ is cyclic and thus $\angle CKE = 135^{\circ} \implies \angle CFE = 45^{\circ}$ as needed. One can also realize $CKEF$ is cyclic by noting $BE \cdot BF = BD \cdot BA = BK \cdot BC$. $\blacksquare$. Alternatively, one can also finish using barycentric coordinates on $\triangle ABK$. Letting $a=BK$, $b=AK$, $c=AB$ we have $E = (a:b:c)$, $D = (s-b:s-a:0)$, and \[ F = (a(a+c) : -b^2 : c(a+c)) = (a(a+c) : a^2-c^2 : c(a+c)) = (a : a-c : c). \] But I guess I'll spare this problem...
24.04.2015 02:38
Call the incenter of $\triangle BDC$ as $G$. Angle chasing makes us want $\angle FCG=90^\circ$, when we would be done from there. We have $BG/GE=BC/CE=BD/DE=BF/FA=BF/FE$ since $\overrightarrow {DF}$ bisects $\angle CDA$. Therefore $(B,E;G,F)$ is a harmonic bundle and from there it follows (provable with LoS) that $\angle FCG$ is right.
24.04.2015 11:38
Produce $AF $ to meet $BC $ at $ Q $ $ \triangle ABF \cong \triangle QFB $ and $ \angle DCB = 90 - \angle B $ We can see that $F $ is the excenter of $ \triangle BDC $ opposite to side $ DC $ $ \Rightarrow \angle FCE = 45 + \angle B/2 $ $ \angle BQF = 90- \angle B/2 $ Now $ \angle CFQ+\angle CQF = \angle FCB =\angle FCE +\angle ECB $ $\Rightarrow \angle CFQ = 45 = \angle CFE $, so by alternate segment we get that $ C $ is tangent to $ \omega $
07.05.2015 08:15
It's easy because we have $ CF || EA $ and $ AF=FE $.
26.09.2015 12:28
Since $ \angle ADF= \angle EDF=45^\circ$, we have $FA$=$FE$. Secondly. let's consider $A'$ the reflection of $A$ according to $BF$. Then we also have $FA$=$FA'$, so $FE$=$FA'$. By sines' law in $\triangle EFC$ and $\triangle A'FC$, we get $\frac{FC}{cos x}$=$\frac{FE}{sin \angle FCE}$ and $\frac{FC}{cos x}$=$\frac{FA'}{sin \angle FCA'}$, where $x=\frac{B}{2}$. From these two equations we get $\angle FCE$=$\angle FCA'$. And also $\angle FEC$=$\angle FA'C$, it means $\angle EFC$=$\angle A'FC$=$45^\circ$. So $\angle FDE$=$\angle EFC$, which exactly means that $CF$ is tangent to $\omega$. Note: If $sin \angle FCE$=$sin \angle FCA'$, then $\angle FCE$=$\angle FCA'$ or their sum is equal to $180^\circ$. But if their sum is equal to $180^\circ$, then $B$=$D$ or $\angle ABC$=$90^\circ$ and it is noted that the triangle is acute-angled. So, it is impossible and $\angle FCE$=$\angle FCA'$.
13.11.2016 19:05
I have also solution Let $M=DF\cap AE$ and $AE\cap BC=T$ $BF\cap AC=K$ By using angle-chasing it suffices to prove that $FC || ME$ $\iff$ $\frac{FE}{EB}=\frac{CT}{TB}$ Here let $\measuredangle FBA=\alpha$ So we ll need to prove that $\cos (2\alpha)\cdot sin^2 (45^{\circ})=sin (45^{\circ}+\alpha)\cdot sin(45^{\circ}-\alpha)$ which is obvious.
27.02.2017 01:06
28.02.2017 20:31
Note that $F$ is the $B$-excenter of $\triangle CBD.$ It follows that $$\angle FED-\angle FDE=\left(90^{\circ}+\frac{\angle B}{2}\right)- 45^{\circ}=\left(45^{\circ}+\frac{\angle B}{2}\right)=\angle DCF,$$so $\overline{FC}$ is tangent to circle $\omega,$ as desired.
24.04.2017 10:41
How can we guess about drawing the diagram which satisfies the condition. I have to draw so many times to get the right one. At first CF is almost the diameter of the circle!
24.04.2017 12:23
Did you use ruler and compass? If you used, your diagram should be accurate.
21.02.2019 14:27
Sorry for revive, but I think this is somewhat interesting:
16.03.2019 11:16
I don’t think my solution is here so here it is
14.04.2019 22:27
Let $P=AF\cap DE$, then $E$ is orthocenter of $APB$. Angle chasing with the orthocenter gives $\angle CPB=\angle EAB$, and $\angle EBP=\angle EAF$, implying $PCB$ isosceles with $CP=CB$. Also, $PFB$ is isosceles, with $PF=PB$, implying $C$, and $F$ are on the perpendicular bisector of $PB$, therefore, $FC$ is the angle bisector of $\angle BFP$. And since $\angle BFP=90^{\circ}$, then $CFE=45^{\circ}$, proving the tangent with inscribed angle $\angle FED=45^{\circ}$.
28.07.2019 14:04
Yay I think I found a new solution, although it seems considerably more complicated than previous solutions. Firstly, notice $AE$ is the diameter of $\omega$, thus $\angle BFA =90^{\circ}$. Now let's angle chase in terms of $\angle ABC =\beta$. As $\angle ADF= 45^{\circ} => \angle FDE= 45^{\circ}$. As $\angle EBC= \frac{\beta}2$ and $\angle ECB= 90^{\circ}- \beta => \angle DEF= 90^{\circ}+\frac{\beta}2=> \angle EFD= 45^{\circ} -\frac{\beta}2$. Using $ADEF$ is cyclic and right angles, $\angle EAF = \angle EDF=45^{\circ}$ and $\angle FEA = \angle FDA = 45^{\circ}$, thus $\angle EAD =45^{\circ} - \frac{\beta}2 => \angle BAF = 90^{\circ} - \frac{\beta}2$. Here I struggled a bit till I got the idea of extending $AF$ to meet $BC$ at $X$- this almost immediately finishes off the problem. Noticing $\angle BXF= 180^{\circ} -(90^{\circ} + \frac{\beta}2) =90^{\circ}-\frac{\beta}2$, which turns out to equal $\angle BAX$, thus $AB=BX$- as $BF$ is perpendicular to $AX$, we get $AF=FX$, and as we already know $AF=FE => AF=FE=FX$. As $EF=FX$, and $\angle EFX=90^{\circ}=> \angle EXF = \angle FEX=45^{\circ}=\angle EAF => EA=AX$. As $\angle FEC=90^{\circ} -\frac{\beta}2 = \angle FXE => \angle CEX = 90^{\circ} - \frac{\beta}2 -45^{\circ}=45^{\circ} - \frac{\beta}2 = \angle CXE => CE=CX$. Thus by SSS $FEC \cong FXC => \angle EFC = \frac{\angle EFX}2=45^{\circ}$. Thus we're done by alternate tangent theorem as $\angle EFC = \angle EAC =45^{\circ}$. Nice problem, took some time even though it was only angle chasing.
24.11.2019 20:20
Notation: Let $\angle B=2x$. One line proof: We have $\angle DCB=90-2x$ and thus, $\angle BEC= 90+x$, but, $\angle FCD = 45+x\implies \angle EFC = \angle FDE =45^\circ$ and we are done.
06.01.2020 01:37
I believe this solution is new. Let $T$ be the point such that $E$ is the orthocenter of $\triangle TBC$, and define $X=BC\cap AT$. Let $\angle ABF=\angle FBX=\alpha$. Note that since $\angle BFA=90$, $\angle TAD=90-\alpha$ so $\angle FTE=\alpha$. Then $TXEB$ is cyclic. Now, as $\angle FEA=45$, $\angle TEY=45+\alpha$ so $\angle DTB=45-\alpha$. This implies that $\angle DBT=45+\alpha$ so that $\angle CBT=45-\alpha$. Thus $XE||TB$, which means $TXEB$ is in fact an isosceles trapezoid. Then by symmetry, $\triangle FXC\cong \triangle FEC$, which means $\angle XFC=\angle CFE=45$. Thus $CF$ is tangent to $(ADEF)$ by the alternate segment theorem.
27.06.2020 13:53
Dear Mathlinkers, http://jl.ayme.pagesperso-orange.fr/Docs/Orthique%20encyclopedie%207.pdf p. 91... Sincerely Jean-Louis
27.06.2020 16:28
My Solution Step 1:$BF=AB\cdot \cos \alpha $ Proof: $ \angle AFB=\angle BDC=90 $ $ \angle BAF=90-\angle ABF=90-\alpha $ $ \frac{AB}{\sin 90}=\frac{BF}{\sin(90-\alpha)}\implies BF=AB\cdot \cos \alpha $ Step 2:$ CD=BC\cdot \sin 2\alpha $ Proof: $ \angle ABC=2\alpha $ $ \frac{BC}{\sin 90}=\frac{CD}{\sin 2\alpha}\implies CD=BC\cdot \sin 2\alpha $ Step 3:$BE=\sqrt{2}AB\cdot \sin(45-\alpha) $ Proof: $ \angle AEB=180-\angle AEF=180-\angle ADF=135 $ $ \angle BAE=\angle AEF-\angle ABE=45-\alpha $ $ \frac{AB}{\sin 135}=\frac{BE}{\sin (45-\alpha)}\implies BE=\sqrt{2}AB\cdot \sin(45-\alpha) $ Step 4:$ CE=\frac{\sqrt{2}\cdot AB\cdot \sin(45-\alpha)\cdot \sin \alpha}{\cos 2\alpha} $ Proof: $ \angle EBC=\alpha $ $ \angle DCB=90-2\alpha $ $ \frac{CE}{\sin \alpha}=\frac{BE}{\sin (90-2\alpha)}=\frac{\sqrt{2}AB\cdot \sin(45-\alpha)}{\sin (90-2\alpha)}\implies CE=\frac{\sqrt{2}\cdot AB\cdot \sin(45-\alpha)\cdot \sin \alpha}{\cos 2\alpha} $ Step 5:$ CF^2=AB^2\cdot \cos^2\alpha+BC^2-2AB\cdot BC\cdot \cos^2\alpha $ Proof: $ CF^2=BF^2+BC^2-2BF\cdot BC\cdot \cos \alpha=AB^2\cdot \cos^2\alpha+BC^2-2AB\cdot BC\cdot \cos^2\alpha $ Step 6:$AB=\frac{BC\cdot \cos 2\alpha}{\sqrt{2}\cdot \sin(45-\alpha)\cdot \cos \alpha} $ Proof: $ \angle BCD=90-2\alpha $ $ \angle BEC=90+\alpha $ $ \frac{BC}{\sin(90+\alpha)}=\frac{BE}{\sin(90-2\alpha)}=\frac{\sqrt{2}AB\cdot \sin(45-\alpha)}{\sin(90-2\alpha)}\implies AB=\frac{BC\cdot \cos 2\alpha}{\sqrt{2}\cdot \sin(45-\alpha)\cdot \cos \alpha} $ Step 7:$CF=\sqrt{2}BC\cdot \sin \alpha $ Proof: $AB=\frac{BC\cdot \cos 2\alpha}{\sqrt{2}\cdot \sin(45-\alpha)\cdot \cos \alpha} $ $ CF^2=AB^2\cdot \cos^2\alpha+BC^2-2AB\cdot BC\cdot \cos^2\alpha=2(BC\cdot \sin\alpha)^2\implies CF=\sqrt{2}BC\cdot \sin \alpha $ Step 8:$CE\cdot CD=2(BC\cdot \sin \alpha)^2 $ Proof: $AB=\frac{BC\cdot \cos 2\alpha}{\sqrt{2}\cdot \sin(45-\alpha)\cdot \cos \alpha} $ $ CE\cdot CD=\frac{\sqrt{2}\cdot AB\cdot \sin(45-\alpha)\cdot \sin \alpha}{\cos 2\alpha}\cdot BC\cdot \sin 2\alpha=2(BC\cdot \sin \alpha)^2 $ Finish: $CF^2=2(BC\cdot \sin \alpha)^2=CE\cdot CD $ $ CF^2=CE\cdot CD\implies CF$ is tangent to $\omega.$
19.04.2021 06:36
Simple when you see it, a bit hard to find. Clearly, $F$ lies of the angle bisectors of $\angle ADC$ and $\angle ABC$. Thus, $F$ is an excenter of $\triangle CDB$. If we let $I$ be the incenter of $\triangle CDB$, by the incenter excenter lemma we have $\angle FCI= 90^{\circ}$. Notice that $\angle EIC = \angle IBC + \angle ICB= \dfrac{1}{2} \left ( \angle DBC + \angle BCD\right ) = \dfrac{1}{2} \left (90^{\circ} \right ) = 45^{\circ}$. So, $\angle CFI =45^{\circ}$. Clearly, $\angle FDC = 45^{\circ}$ which implies the result and concludes the proof. $\blacksquare$
24.06.2022 07:18
Notice $F$ is the $B$-excenter of $\triangle BCD.$ Hence, \begin{align*}\angle ECF&=90-\tfrac{1}{2}\angle BCD\\&=45+\tfrac{1}{2}\angle DBC\\&=180-45-(90-\angle DBE)\\&=180-\angle FAD-\angle ADF\\&=\angle DFA\\&=\angle DEA\end{align*}and $\overline{CF}\parallel\overline{AE}.$ We see $\angle CFA=\angle AEF=\angle FDE.$ $\square$
03.11.2022 19:30
oh god, took me so much time to realise that $F$ is the excenter.
25.01.2023 07:16
is this even right Delete point $A$ because it is irrelevant. We wish to show that if $\triangle BDC$ is a right triangle with a right angle at $D$, and the B-bisector hits $CD$ at $E$, and has B-excenter $F$, then $CF$ is tangent to $(DEF).$ Note that $\angle FDC=45$. Let $\angle DBE=\theta$. Then, $\angle DEB=\angle FEC=90-\theta.$ Also, $\angle DCB=90-2\theta$, so $\angle DCF=45+\theta$, so $\angle EFC=45$. Since $$\angle FDC=\angle CFE=45,$$we are done.
12.06.2023 21:17
My solution is also simmilar to other solutions $\angle CDA=90$ $\angle CDA=\angle CDF+\angle ADF$ $90=45+\angle CDF$ $\angle CDF=45$ $\angle ADF=\angle CDF$ $\implies$ $DF$ is angle bisector of $\angle CDA$ $...(1)$ $BE$ is the angle bisector of $\angle ABC$ $\implies$ $BE$ is also the angle bisector of $\angle CBD$ $...(2)$ $BE$ $\cap$ $DF$=$\{ F \}$ $\implies$ $F$ is the $B$-excenter of the $\triangle BDC$ because of $(1)$ and $(2)$ Since $F$ is the $B$-excenter we get that: $CF$ is the angle bisector of the external angle of $\angle BCD$ $\implies$ $\angle FCE$= $\dfrac{1}{2}(180- \angle BCD)$ $...(3)$ From the $\triangle BDC$ we get: $\angle BDC +\angle DBC +\angle BCD=180$ $90+\beta+\angle BCD=180$ $\angle BCD=90-\beta$ $...(4)$ Combining $(3)$ with $(4)$ we have: $\angle FCE$= $\dfrac{1}{2}(180- \angle BCD)=\dfrac{1}{2}(90+\beta)=45+\dfrac{\beta}{2}$ $\angle FCE=45+\dfrac{\beta}{2}$ By $\square ADEF-cyclic$ we have: $\angle FDE=\angle FAE=45=\angle FDA=\angle FEA$ $\implies$ $\angle FDE=\angle FDA=\angle FAE=\angle FEA=45$ Let $\angle DAE=x$ now from the $\triangle DAE$ we get: $\angle ADE+\angle DAE+\angle AED=180$ $90+x+\angle AED=180$ $\angle AED=90-x$ $\angle CED=180$ $\angle CED=\angle AED+\angle AEF+ \angle FEC$ $180=90-x+45+\angle FEC$ $45+x=\angle FEC$ $\angle FEC=45+x$ $\angle FEC=\angle BED$ $\angle BED=45+x$ $...(5)$ From $\triangle BDE$ $\angle BDE+ \angle EBD+ \angle BED=180$ $90+\dfrac{\beta}{2}+45+x=180$ $x=45-\dfrac{\beta}{2}$ Combining with $(5)$ we get: $\angle BED=90-\dfrac{\beta}{2}$ $\angle FEC=\angle BED=90-\dfrac{\beta}{2}$ $\angle FEC=90-\dfrac{\beta}{2}$ Now from the $\triangle CEF$ $\angle FEC+ \angle FCE+ \angle CFE=180$ $90-\dfrac{\beta}{2}+45+\dfrac{\beta}{2}+ \angle CFE=180$ $\angle CFE=45$ $\implies$ $\angle CFE=\angle FAE$ $<=>$ $CF$ is tangent to $w$
Attachments:

29.08.2023 02:06
Let $\theta=\angle DBE$. Clearly $\angle AFE=90^{\circ}$, so $\angle EAF=\angle AEF=45^{\circ}$, so $\angle DFE=\angle DAE=45^{\circ}-\theta$. Now note that $\angle ADF=\angle CDF=45^{\circ}$ and $\angle DBF=\angle CBF$, so $F$ is the $B$-excenter of triangle $BCD$, so $\angle DFC=90^{\circ}-\theta$, so $\angle EFC=45^{\circ}=\angle EAF$ and we win. $\blacksquare$
17.09.2023 17:50
Since $BE$ is angle bisector of $\angle{DBC}$ in $\triangle{BDC}$ we have incenter of $\triangle{BDC}$ $I \in BE$. Also since $\angle{ADF}=45^{\circ}$ we have $DF$ to be external angle bisector of $\angle{BDC}$ which gives $F$ to be $B-$ excenter of $\triangle{BCD}$. Now it is well known that $IDFC$ is cyclic , hence we have $\angle{IDC}=\angle{IFC}=\angle{FDE}=45^{\circ}$. Hence from the tangent secant theorem, we have $CF$ to be tangent to $\omega$, done. $\blacksquare$
Attachments:

11.12.2024 05:58
Since $F$ lies on the angle bisectors of $\angle CBD$ and $\angle CDA$, it is the $B$-excenter in $\triangle BCD$. We have \[\angle CFB = 180^{\circ} - \frac{\angle B}{2} - \frac{180 - \angle C}{2} = 45^{\circ},\]and since $\angle FDE = 45^{\circ}$ too, the problem follows.