Problem

Source:

Tags: geometry, EGMO, Triangle, tangent, EGMO 2015



Let $\triangle ABC$ be an acute-angled triangle, and let $D$ be the foot of the altitude from $C.$ The angle bisector of $\angle ABC$ intersects $CD$ at $E$ and meets the circumcircle $\omega$ of triangle $\triangle ADE$ again at $F.$ If $\angle ADF = 45^{\circ}$, show that $CF$ is tangent to $\omega .$