Problem

Source: 2015 Taiwan TST Round 2 Quiz 1 P1

Tags: algebra, polynomial



Let $f(x)=\sum_{i=0}^{n}a_ix^i$ and $g(x)=\sum_{i=0}^{n}b_ix^i$, where $a_n$,$b_n$ can be zero. Called $f(x)\ge g(x)$ if exist $r$ such that $\forall i>r,a_i=b_i,a_r>b_r$ or $f(x)=g(x)$. Prove that: if the leading coefficients of $f$ and $g$ are positive, then $f(f(x))+g(g(x))\ge f(g(x))+g(f(x))$