Let $f(x)=\sum_{i=0}^{n}a_ix^i$ and $g(x)=\sum_{i=0}^{n}b_ix^i$, where $a_n$,$b_n$ can be zero. Called $f(x)\ge g(x)$ if exist $r$ such that $\forall i>r,a_i=b_i,a_r>b_r$ or $f(x)=g(x)$. Prove that: if the leading coefficients of $f$ and $g$ are positive, then $f(f(x))+g(g(x))\ge f(g(x))+g(f(x))$
Problem
Source: 2015 Taiwan TST Round 2 Quiz 1 P1
Tags: algebra, polynomial
YaWNeeT
14.04.2015 18:17
(sol):
easy to see,$\geq$ satifies add some poly.
1.if not
inductionly prove $a_i=b_i,\forall i=1,2,...,n$
first $a_n=b_n$:consider coef. of $x^{n^2}$,in LHS $a_n^{n+1}+b_n^{n+1}$,in RHS $a_n^nb_n+a_nb_n^n$,LHS $\geq$ RHS,"$=$" iff $a_n=b_n$,so "$=$" must holds
Assume $a_i=b_i,\forall i=k,k+1,...,n$
\[a_nf(x)^n+a_{n-1}f(x)^{n-1}+...+a_kf(x)^k+...+a_0+b_ng(x)^n+b_{n-1}g(x)^{n-1}+...+b_kg(x)^k+...+b_0\]\[\geq a_ng(x)^n+a_{n-1}g(x)^{n-1}+...+a_kg(x)^k+...+a_0+b_nf(x)^n+b_{n-1}f(x)^{n-1}+...+b_kf(x)^k+...+b_0\]
i.e.
\[a_{k-1}f(x)^{k-1}+...+a_0+b_{k-1}g(x)^{k-1}+...+b_0\geq a_{k-1}g(x)^{k-1}+...+a_0+b_{k-1}f(x)^{k-1}+...+b_0\]
Easy to see $x^q$ have same coef. both side $\forall q>n(k-2)+k-1$(cause they choosen from $a_n$ to $a_k$),consider coef. of $x^{n(k-2)+k-1}$,in LHS $(k-1)a_n^{k-2}(a_{k-1}^2+b_{k-1}^2)$,in RHS $(k-1)a_n^{k-2}\times 2a_{k-1}b_{k-1}$,AM-GM get LHS$\geq$RHS,"$=$" iff $a_{k-1}=b_{k-1}$,so "$=$" must holds
get $f(x)=g(x)$ by induction ,contradiction!
2.$f(x)\geq g(x)$ iff exists $M$ large s.t. $\forall m>M,f(m)\geq g(m)$
WLOG $f(x)\geq g(x)$,only need to prove $(f-g)(f(x))\geq (f-g)(g(x))$,and $f-g$ has positive leading coef.,then there are $M$ large s.t.$\forall m>M$:(1)$(f-g)(m)$ non-decreasing,(2)$f(m)\geq g(m)$,so $(f-g)(f(m))\geq (f-g)(g(m))$,done!
pco
14.04.2015 18:19
YaWNeeT wrote: sorry for using Chinese,I have no time to translate it into English According to me, in such an international forum, if you have no time to translate, better to remain quiet rather than posting such things ... .
YaWNeeT
14.04.2015 18:36
OK,I just translated the solution of proposer into English