Problem

Source: Greek BMO TST Problem 3

Tags: geometry, circumcircle



Let $ABC$ be an acute triangle with $\displaystyle{AB<AC<BC}$ inscribed in circle $ \displaystyle{c(O,R)}$.The excircle $\displaystyle{(c_A)}$ has center $\displaystyle{I}$ and touches the sides $\displaystyle{BC,AC,AB}$ of the triangle $ABC$ at $\displaystyle{D,E,Z} $ respectively.$ \displaystyle{AI}$ cuts $\displaystyle{(c)}$ at point $M$ and the circumcircle $\displaystyle{(c_1)}$ of triangle $\displaystyle{AZE}$ cuts $\displaystyle{(c)}$ at $K$.The circumcircle $\displaystyle{(c_2)}$ of the triangle $\displaystyle{OKM}$ cuts $\displaystyle{(c_1)} $ at point $N$.Prove that the point of intersection of the lines $AN,KI$ lies on $ \displaystyle{(c)}$.