Problem

Source: APMO 2015 Problem 5

Tags: Sequence, number theory, APMO



Determine all sequences $a_0 , a_1 , a_2 , \ldots$ of positive integers with $a_0 \ge 2015$ such that for all integers $n\ge 1$: (i) $a_{n+2}$ is divisible by $a_n$ ; (ii) $|s_{n+1} - (n + 1)a_n | = 1$, where $s_{n+1} = a_{n+1} - a_n + a_{n-1} - \cdots + (-1)^{n+1} a_0$ . Proposed by Pakawut Jiradilok and Warut Suksompong, Thailand