Problem

Source: APMO 2015

Tags: number theory, APMO, Sequence



A sequence of real numbers $a_0, a_1, . . .$ is said to be good if the following three conditions hold. (i) The value of $a_0$ is a positive integer. (ii) For each non-negative integer $i$ we have $a_{i+1} = 2a_i + 1 $ or $a_{i+1} =\frac{a_i}{a_i + 2} $ (iii) There exists a positive integer $k$ such that $a_k = 2014$. Find the smallest positive integer $n$ such that there exists a good sequence $a_0, a_1, . . .$ of real numbers with the property that $a_n = 2014$. Proposed by Wang Wei Hua, Hong Kong