Problem

Source: Spring 2005 Tournament of Towns Senior O-Level #1

Tags: coordinates, algebra



The graphs of four functions of the form $y = x^2 + ax + b$, where a and b are real coefficients, are plotted on the coordinate plane. These graphs have exactly four points of intersection, and at each one of them, exactly two graphs intersect. Prove that the sum of the largest and the smallest $x$-coordinates of the points of intersection is equal to the sum of the other two. (3 points)