Problem

Source: 2015 Final Korean Mathematical Olympiad Day 1 Problem 2

Tags: geometry, circumcircle, concurrency, incenter



In a triangle $\triangle ABC$ with incenter $I$, the incircle meets lines $BC, CA, AB$ at $D, E, F$ respectively. Define the circumcenter of $\triangle IAB$ and $\triangle IAC$ $O_1$ and $O_2$ respectively. Let the two intersections of the circumcircle of $\triangle ABC$ and line $EF$ be $P, Q$. Prove that the circumcenter of $\triangle DPQ$ lies on the line $O_1O_2$.