Problem

Source:

Tags: geometry, geometry unsolved



Given acute triangle $ABC$ with circumcenter $O$ and the center of nine-point circle $N$. Point $N_1$ are given such that $\angle NAB = \angle N_1AC$ and $\angle NBC = \angle N_1BA$. Perpendicular bisector of segment $OA$ intersects the line $BC$ at $A_1$. Analogously define $B_1$ and $C_1$. Show that all three points $A_1,B_1,C_1$ are collinear at a line that is perpendicular to $ON_1$.