Problem

Source: Greece National MO 2015

Tags: algebra, polynomial



Let $P(x)=ax^3+(b-a)x^2-(c+b)x+c$ and $Q(x)=x^4+(b-1)x^3+(a-b)x^2-(c+a)x+c$ be polynomials of $x$ with $a,b,c$ non-zero real numbers and $b>0$.If $P(x)$ has three distinct real roots $x_0,x_1,x_2$ which are also roots of $Q(x)$ then: A)Prove that $abc>28$, B)If $a,b,c$ are non-zero integers with $b>0$,find all their possible values.