Problem

Source: CGMO 2006

Tags: function, algebra unsolved, algebra



Let $a>0$, the function $f: (0,+\infty) \to R$ satisfies $f(a)=1$, if for any positive reals $x$ and $y$, there is \[f(x)f(y)+f \left( \frac{a}{x}\right)f \left( \frac{a}{y}\right) =2f(xy)\] then prove that $f(x)$ is a constant.