Problem

Source: Serbia and Montenegro 2003

Tags: number theory proposed, number theory



Let $S$ be the subset of $N$($N$ is the set of all natural numbers) satisfying: i)Among each $2003$ consecutive natural numbers there exist at least one contained in $S$; ii)If $n \in S$ and $n>1$ then $[\frac{n}{2}] \in S$ Prove that:$S=N$ I hope it hasn't posted before.