A stage course is attended by $n \ge 4$ students. The day before the final exam, each group of three students conspire against another student to throw him/her out of the exam. Prove that there is a student against whom there are at least $\sqrt[3]{(n-1)(n- 2)} $conspirators.
2005 Italy TST
Day 1
$(a)$ Prove that in a triangle the sum of the distances from the centroid to the sides is not less than three times the inradius, and find the cases of equality. $(b)$ Determine the points in a triangle that minimize the sum of the distances to the sides.
The function $\psi : \mathbb{N}\rightarrow\mathbb{N}$ is defined by $\psi (n)=\sum_{k=1}^n\gcd (k,n)$. $(a)$ Prove that $\psi (mn)=\psi (m)\psi (n)$ for every two coprime $m,n \in \mathbb{N}$. $(b)$ Prove that for each $a\in\mathbb{N}$ the equation $\psi (x)=ax$ has a solution.
Day 2
Suppose that $f:\{1, 2,\ldots ,1600\}\rightarrow\{1, 2,\ldots ,1600\}$ satisfies $f(1)=1$ and \[f^{2005}(x)=x\quad\text{for}\ x=1,2,\ldots ,1600. \] $(a)$ Prove that $f$ has a fixed point different from $1$. $(b)$ Find all $n>1600$ such that any $f:\{1,\ldots ,n\}\rightarrow\{1,\ldots ,n\}$ satisfying the above condition has at least two fixed points.
The circle $\Gamma$ and the line $\ell$ have no common points. Let $AB$ be the diameter of $\Gamma$ perpendicular to $\ell$, with $B$ closer to $\ell$ than $A$. An arbitrary point $C\not= A$, $B$ is chosen on $\Gamma$. The line $AC$ intersects $\ell$ at $D$. The line $DE$ is tangent to $\Gamma$ at $E$, with $B$ and $E$ on the same side of $AC$. Let $BE$ intersect $\ell$ at $F$, and let $AF$ intersect $\Gamma$ at $G\not= A$. Let $H$ be the reflection of $G$ in $AB$. Show that $F,C$, and $H$ are collinear.
Let $N$ be a positive integer. Alberto and Barbara write numbers on a blackboard taking turns, according to the following rules. Alberto starts writing $1$, and thereafter if a player has written $n$ on a certain move, his adversary is allowed to write $n+1$ or $2n$ as long as he/she does not obtain a number greater than $N$. The player who writes $N$ wins. $(a)$ Determine which player has a winning strategy for $N=2005$. $(b)$ Determine which player has a winning strategy for $N=2004$. $(c)$ Find for how many integers $N\le 2005$ Barbara has a winning strategy.