Let $(a_1, a_2,\ldots , a_n)$ be a permutation of $1, 2, \ldots , n,$ where $n \geq 2.$ For each $k = 1, \ldots , n$, we know that $a_k$ apples are placed at the point $k$ on the real axis. Children named $A,B,C$ are assigned respective points $x_A, x_B, x_C \in \{1, \ldots , n\}.$ For each $k,$ the children whose points are closest to $ k$ divide $a_k$ apples equally among themselves. We call $(x_A, x_B, x_C)$ a stable configuration if no child’s total share can be increased by assigning a new point to this child and not changing the points of the other two. Determine the values of $n$ for which a stable configuration exists for some distribution $(a_1, \ldots, a_n)$ of the apples.
2002 Turkey MO (2nd round)
Day 1
Two circles are externally tangent to each other at a point $A$ and internally tangent to a third circle $\Gamma$ at points $B$ and $C.$ Let $D$ be the midpoint of the secant of $\Gamma$ which is tangent to the smaller circles at $A.$ Show that $A$ is the incenter of the triangle $BCD$ if the centers of the circles are not collinear.
Graph Airlines $ (GA)$ operates flights between some of the cities of the Republic of Graphia. There are at least three $ GA$ flights from each city, and it is possible to travel from any city in Graphia to any city in Graphia using $ GA$ flights. $ GA$ decides to discontinue some of its flights. Show that this can be done in such a way that it is still possible to travel between any two cities using $ GA$ flights, yet at least $ 2/9$ of the cities have only one flight.
Day 2
Find all prime numbers $p$ for which the number of ordered pairs of integers $(x, y)$ with $0\leq x, y < p$ satisfying the condition \[y^2 \equiv x^3 - x \pmod p\] is exactly $p.$
Let $ABC$ be a triangle, and points $D,E$ are on $BA,CA$ respectively such that $DB=BC=CE$. Let $O,I$ be the circumcenter, incenter of $\triangle ABC$. Prove that the circumradius of $\triangle ADE$ is equal to $OI$.
Let $n$ be a positive integer and let $T$ denote the collection of points $(x_1, x_2, \ldots, x_n) \in \mathbb R^n$ for which there exists a permutation $\sigma$ of $1, 2, \ldots , n$ such that $x_{\sigma(i)} - x_{\sigma(i+1) } \geq 1$ for each $i=1, 2, \ldots , n.$ Prove that there is a real number $d$ satisfying the following condition: For every $(a_1, a_2, \ldots, a_n) \in \mathbb R^n$ there exist points $(b_1, \ldots, b_n)$ and $(c_1,\ldots, c_n)$ in $T$ such that, for each $i = 1, . . . , n,$ \[a_i=\frac 12 (b_i+c_i) , \quad |a_i - b_i| \leq d, \quad \text{and} \quad |a_i - c_i| \leq d.\]