2010 Danube Mathematical Olympiad

1

Determine all integer numbers $n\ge 3$ such that the regular $n$-gon can be decomposed into isosceles triangles by non-intersecting diagonals.

2

Given a triangle $ABC$, let $A',B',C'$ be the perpendicular feet dropped from the centroid $G$ of the triangle $ABC$ onto the sides $BC,CA,AB$ respectively. Reflect $A',B',C'$ through $G$ to $A'',B'',C''$ respectively. Prove that the lines $AA'',BB'',CC''$ are concurrent.

3

All sides and diagonals of a convex $n$-gon, $n\ge 3$, are coloured one of two colours. Show that there exist $\left[\frac{n+1}{3}\right]$ pairwise disjoint monochromatic segments. (Two segments are disjoint if they do not share an endpoint or an interior point).

4

Let $p$ be a prime number of the form $4k+3$. Prove that there are no integers $w,x,y,z$ whose product is not divisible by $p$, such that: \[ w^{2p}+x^{2p}+y^{2p}=z^{2p}. \]

5

Let $n\ge3$ be a positive integer. Find the real numbers $x_1\ge0,\ldots,x_n\ge 0$, with $x_1+x_2+\ldots +x_n=n$, for which the expression \[(n-1)(x_1^2+x_2^2+\ldots+x_n^2)+nx_1x_2\ldots x_n\] takes a minimal value.