2013 Mediterranean Mathematics Olympiad

1

Do there exist two real monic polynomials $P(x)$ and $Q(x)$ of degree 3,such that the roots of $P(Q(X))$ are nine pairwise distinct nonnegative integers that add up to $72$? (In a monic polynomial of degree 3, the coefficient of $x^{3}$ is $1$.)

2

Determine the least integer $k$ for which the following story could hold true: In a chess tournament with $24$ players, every pair of players plays at least $2$ and at most $k$ games against each other. At the end of the tournament, it turns out that every player has played a different number of games.

3

Let $x,y,z$ be positive reals for which: $\sum (xy)^{2}=6xyz$ Prove that: $\sum \sqrt{\frac{x}{x+yz}}\geq \sqrt{3}$.

4

$ABCD$ is quadrilateral inscribed in a circle $\Gamma$ .Lines $AB$ and $CD$ intersect at $E$ and lines$AD$ and $BC$ intersect at $F$. Prove that the circle with diameter $EF$ and circle $\Gamma$ are orthogonal.