For a real number $\alpha>0$, consider the infinite real sequence defined by $x_1=1$ and \[ \alpha x_n = x_1+x_2+\cdots+x_{n+1} \mbox{\qquad for } n\ge1. \] Determine the smallest $\alpha$ for which all terms of this sequence are positive reals. (Proposed by Gerhard Woeginger, Austria)
2012 Mediterranean Mathematics Olympiad
In an acute $\triangle ABC$, prove that \begin{align*}\frac{1}{3}\left(\frac{\tan^2A}{\tan B\tan C}+\frac{\tan^2 B}{\tan C\tan A}+\frac{\tan^2 C}{\tan A\tan B}\right) \\ +3\left(\frac{1}{\tan A+\tan B+\tan C}\right)^{\frac{2}{3}}\ge 2.\end{align*}
Consider a binary matrix $M$(all entries are $0$ or $1$) on $r$ rows and $c$ columns, where every row and every column contain at least one entry equal to $1$. Prove that there exists an entry $M(i,j) = 1$, such that the corresponding row-sum $R(i)$ and column-sum $C(j)$ satisfy $r R(i)\ge c C(j)$. (Proposed by Gerhard Woeginger, Austria)
Let $O$ be the circumcenter,$R$ be the circumradius, and $k$ be the circumcircle of a triangle $ABC$ . Let $k_1$ be a circle tangent to the rays $AB$ and $AC$, and also internally tangent to $k$. Let $k_2$ be a circle tangent to the rays $AB$ and $AC$ , and also externally tangent to $k$. Let $A_1$ and $A_2$ denote the respective centers of $k_1$ and $k_2$. Prove that: $(OA_1+OA_2)^2-A_1A_2^2 = 4R^2.$