2011 Mediterranean Mathematics Olympiad

1

A Mediterranean polynomial has only real roots and it is of the form \[ P(x) = x^{10}-20x^9+135x^8+a_7x^7+a_6x^6+a_5x^5+a_4x^4+a_3x^3+a_2x^2+a_1x+a_0 \] with real coefficients $a_0\ldots,a_7$. Determine the largest real number that occurs as a root of some Mediterranean polynomial. (Proposed by Gerhard Woeginger, Austria)

2

Let $A$ be a finite set of positive reals, let $B = \{x/y\mid x,y\in A\}$ and let $C = \{xy\mid x,y\in A\}$. Show that $|A|\cdot|B|\le|C|^2$. (Proposed by Gerhard Woeginger, Austria)

3

A regular tetrahedron of height $h$ has a tetrahedron of height $xh$ cut off by a plane parallel to the base. When the remaining frustrum is placed on one of its slant faces on a horizontal plane, it is just on the point of falling over. (In other words, when the remaining frustrum is placed on one of its slant faces on a horizontal plane, the projection of the center of gravity G of the frustrum is a point of the minor base of this slant face.) Show that $x$ is a root of the equation $x^3 + x^2 + x = 2$.

4

Let $D$ be the foot of the internal bisector of the angle $\angle A$ of the triangle $ABC$. The straight line which joins the incenters of the triangles $ABD$ and $ACD$ cut $AB$ and $AC$ at $M$ and $N$, respectively. Show that $BN$ and $CM$ meet on the bisector $AD$.