2008 Mediterranean Mathematics Olympiad

1

Let $ABCDEF$ be a convex hexagon such that all of its vertices are on a circle. Prove that $AD$, $BE$ and $CF$ are concurrent if and only if $\frac {AB}{BC}\cdot\frac {CD}{DE}\cdot\frac {EF}{FA}= 1$.

2

Determine whether there exist two infinite point sequences $ A_1,A_2,\ldots$ and $ B_1,B_2,\ldots$ in the plane, such that for all $i,j,k$ with $ 1\le i < j < k$, (i) $ B_k$ is on the line that passes through $ A_i$ and $ A_j$ if and only if $ k=i+j$. (ii) $ A_k$ is on the line that passes through $ B_i$ and $ B_j$ if and only if $ k=i+j$. (Proposed by Gerhard Woeginger, Austria)

3

Let $n$ be a positive integer. Calculate the sum $\sum_{k=1}^n\ \ {\sum_{1\le i_1 < \ldots < i_k\le n}^{}{\frac {2^k}{(i_1 + 1)(i_2 + 1)\ldots (i_k + 1)}}}$

4

The sequence of polynomials $(a_n)$ is defined by $a_0=0$, $ a_1=x+2$ and $a_n=a_{n-1}+3a_{n-1}a_{n-2} +a_{n-2}$ for $n>1$. (a) Show for all positive integers $k,m$: if $k$ divides $m$ then $a_k$ divides $a_m$. (b) Find all positive integers $n$ such that the sum of the roots of polynomial $a_n$ is an integer.