2006 Mediterranean Mathematics Olympiad

1

Every point of a plane is colored red or blue, not all with the same color. Can this be done in such a way that, on every circumference of radius 1, (a) there is exactly one blue point; (b) there are exactly two blue points?

2

Let $P$ be a point inside a triangle $ABC$, and $A_1B_2,B_1C_2,C_1A_2$ be segments passing through $P$ and parallel to $AB, BC, CA$ respectively, where points $A_1, A_2$ lie on $BC, B_1, B_2$ on $CA$, and $C_1,C_2$ on $AB$. Prove that \[ \text{Area}(A_1A_2B_1B_2C_1C_2) \ge \frac{1}{2}\text{Area}(ABC)\]

3

The side lengths $a,b,c$ of a triangle $ABC$ are integers with $\gcd(a,b,c)=1$. The bisector of angle $BAC$ meets $BC$ at $D$. (a) show that if triangles $DBA$ and $ABC$ are similar then $c$ is a square. (b) If $c=n^2$ is a square $(n\ge 2)$, find a triangle $ABC$ satisfying (a).

4

Let $0\le x_{i,j} \le 1$, where $i=1,2, \ldots m$ and $j=1,2, \ldots n$. Prove the inequality \[ \prod_{j=1}^n\left(1-\prod_{i=1}^mx_{i,j} \right)+ \prod_{i=1}^m\left(1-\prod_{j=1}^n(1-x_{i,j}) \right) \ge 1 \]