Find all natural numbers $m$ such that \[1! \cdot 3! \cdot 5! \cdots (2m-1)! = \biggl( \frac{m(m+1)}{2}\biggr) !.\]
2004 Mediterranean Mathematics Olympiad
1
2
In a triangle $ABC$, the altitude from $A$ meets the circumcircle again at $T$ . Let $O$ be the circumcenter. The lines $OA$ and $OT$ intersect the side $BC$ at $Q$ and $M$, respectively. Prove that \[\frac{S_{AQC}}{S_{CMT}} = \biggl( \frac{ \sin B}{\cos C} \biggr)^2 .\]
3
Let $a,b,c>0$ and $ab+bc+ca+2abc=1$ then prove that \[2(a+b+c)+1\geq 32abc\]
4
Let $z_1, z_2, z_3$ be pairwise distinct complex numbers satisfying $|z_1| = |z_2| = |z_3| = 1$ and \[\frac{1}{2 + |z_1 + z_2|}+\frac{1}{2 + |z_2 + z_3|}+\frac{1}{2 + |z_3 + z_1|} =1.\] If the points $A(z_1),B(z_2),C(z_3)$ are vertices of an acute-angled triangle, prove that this triangle is equilateral.