Let $a,b,c\in\{0,1,2,\cdots,9\}$.The quadratic equation $ax^2+bx+c=0$ has a rational root. Prove that the three-digit number $abc$ is not a prime number.
2010 South East Mathematical Olympiad
Day 1
For any set $A=\{a_1,a_2,\cdots,a_m\}$, let $P(A)=a_1a_2\cdots a_m$. Let $n={2010\choose99}$, and let $A_1, A_2,\cdots,A_n$ be all $99$-element subsets of $\{1,2,\cdots,2010\}$. Prove that $2010|\sum^{n}_{i=1}P(A_i)$.
The incircle of triangle $ABC$ touches $BC$ at $D$ and $AB$ at $F$, intersects the line $AD$ again at $H$ and the line $CF$ again at $K$. Prove that $\frac{FD\times HK}{FH\times DK}=3$
Let $a$ and $b$ be positive integers such that $1\leq a<b\leq 100$. If there exists a positive integer $k$ such that $ab|a^k+b^k$, we say that the pair $(a, b)$ is good. Determine the number of good pairs.
Day 2
$ABC$ is a triangle with a right angle at $C$. $M_1$ and $M_2$ are two arbitrary points inside $ABC$, and $M$ is the midpoint of $M_1M_2$. The extensions of $BM_1,BM$ and $BM_2$ intersect $AC$ at $N_1,N$ and $N_2$ respectively. Prove that $\frac{M_1N_1}{BM_1}+\frac{M_2N_2}{BM_2}\geq 2\frac{MN}{BM}$
Let $\mathbb{N}^*$ be the set of positive integers. Define $a_1=2$, and for $n=1, 2, \ldots,$\[ a_{n+1}=\min\{\lambda|\frac{1}{a_1}+\frac{1}{a_2}+\cdots\frac{1}{a_n}+\frac{1}{\lambda}<1,\lambda\in \mathbb{N}^*\}\] Prove that $a_{n+1}=a_n^2-a_n+1$ for $n=1,2,\ldots$.
Let $n$ be a positive integer. The real numbers $a_1,a_2,\cdots,a_n$ and $r_1,r_2,\cdots,r_n$ are such that $a_1\leq a_2\leq \cdots \leq a_n$ and $0\leq r_1\leq r_2\leq \cdots \leq r_n$. Prove that $\sum_{i=1}^n\sum_{j=1}^n a_i a_j \min (r_i,r_j)\geq 0$
$A_1,A_2,\cdots,A_8$ are fixed points on a circle. Determine the smallest positive integer $n$ such that among any $n$ triangles with these eight points as vertices, two of them will have a common side.