Suppose $\triangle ABC$ is scalene. $O$ is the circumcenter and $A'$ is a point on the extension of segment $AO$ such that $\angle BA'A = \angle CA'A$. Let point $A_1$ and $A_2$ be foot of perpendicular from $A'$ onto $AB$ and $AC$. $H_{A}$ is the foot of perpendicular from $A$ onto $BC$. Denote $R_{A}$ to be the radius of circumcircle of $\triangle H_{A}A_1A_2$. Similiarly we can define $R_{B}$ and $R_{C}$. Show that: \[\frac{1}{R_{A}} + \frac{1}{R_{B}} + \frac{1}{R_{C}} = \frac{2}{R}\] where R is the radius of circumcircle of $\triangle ABC$.
2008 China National Olympiad
Day 1
Given an integer $n\ge3$, prove that the set $X=\{1,2,3,\ldots,n^2-n\}$ can be divided into two non-intersecting subsets such that neither of them contains $n$ elements $a_1,a_2,\ldots,a_n$ with $a_1<a_2<\ldots<a_n$ and $a_k\le\frac{a_{k-1}+a_{k+1}}2$ for all $k=2,\ldots,n-1$.
Given a positive integer $n$ and $x_1 \leq x_2 \leq \ldots \leq x_n, y_1 \geq y_2 \geq \ldots \geq y_n$, satisfying \[\displaystyle\sum_{i = 1}^{n} ix_i = \displaystyle\sum_{i = 1}^{n} iy_i\] Show that for any real number $\alpha$, we have \[\displaystyle\sum_{i =1}^{n} x_i[i\alpha] \geq \displaystyle\sum_{i =1}^{n} y_i[i\alpha]\] Here $[\beta]$ denotes the greastest integer not larger than $\beta$.
Day 2
Let $A$ be an infinite subset of $\mathbb{N}$, and $n$ a fixed integer. For any prime $p$ not dividing $n$, There are infinitely many elements of $A$ not divisible by $p$. Show that for any integer $m >1, (m,n) =1$, There exist finitely many elements of $A$, such that their sum is congruent to 1 modulo $m$ and congruent to 0 modulo $n$.
Find the smallest integer $n$ satisfying the following condition: regardless of how one colour the vertices of a regular $n$-gon with either red, yellow or blue, one can always find an isosceles trapezoid whose vertices are of the same colour.
Find all triples $(p,q,n)$ that satisfy \[q^{n+2} \equiv 3^{n+2} (\mod p^n) ,\quad p^{n+2} \equiv 3^{n+2} (\mod q^n)\] where $p,q$ are odd primes and $n$ is an positive integer.