2013 India IMO Training Camp

Practice Test

May 5th - Day 1

1

For a prime $p$, a natural number $n$ and an integer $a$, we let $S_n(a,p)$ denote the exponent of $p$ in the prime factorisation of $a^{p^n} - 1$. For example, $S_1(4,3) = 2$ and $S_2(6,2) = 0$. Find all pairs $(n,p)$ such that $S_n(2013,p) = 100$.

2

Let $ABCD$ by a cyclic quadrilateral with circumcenter $O$. Let $P$ be the point of intersection of the diagonals $AC$ and $BD$, and $K, L, M, N$ the circumcenters of triangles $AOP, BOP$, $COP, DOP$, respectively. Prove that $KL = MN$.

3

We define an operation $\oplus$ on the set $\{0, 1\}$ by \[ 0 \oplus 0 = 0 \,, 0 \oplus 1 = 1 \,, 1 \oplus 0 = 1 \,, 1 \oplus 1 = 0 \,.\] For two natural numbers $a$ and $b$, which are written in base $2$ as $a = (a_1a_2 \ldots a_k)_2$ and $b = (b_1b_2 \ldots b_k)_2$ (possibly with leading 0's), we define $a \oplus b = c$ where $c$ written in base $2$ is $(c_1c_2 \ldots c_k)_2$ with $c_i = a_i \oplus b_i$, for $1 \le i \le k$. For example, we have $7 \oplus 3 = 4$ since $ 7 = (111)_2$ and $3 = (011)_2$. For a natural number $n$, let $f(n) = n \oplus \left[ n/2 \right]$, where $\left[ x \right]$ denotes the largest integer less than or equal to $x$. Prove that $f$ is a bijection on the set of natural numbers.

May 10th - Day 2

1

Let $a, b, c$ be positive real numbers such that $a + b + c = 1$. If $n$ is a positive integer then prove that \[ \frac{(3a)^n}{(b + 1)(c + 1)} + \frac{(3b)^n}{(c + 1)(a + 1)} + \frac{(3c)^n}{(a + 1)(b + 1)} \ge \frac{27}{16} \,. \]

2

In a triangle $ABC$ with $B = 90^\circ$, $D$ is a point on the segment $BC$ such that the inradii of triangles $ABD$ and $ADC$ are equal. If $\widehat{ADB} = \varphi$ then prove that $\tan^2 (\varphi/2) = \tan (C/2)$.

3

A marker is placed at the origin of an integer lattice. Calvin and Hobbes play the following game. Calvin starts the game and each of them takes turns alternatively. At each turn, one can choose two (not necessarily distinct) integers $a, b$, neither of which was chosen earlier by any player and move the marker by $a$ units in the horizontal direction and $b$ units in the vertical direction. Hobbes wins if the marker is back at the origin any time after the first turn. Prove or disprove that Calvin can prevent Hobbes from winning. Note: A move in the horizontal direction by a positive quantity will be towards the right, and by a negative quantity will be towards the left (and similar directions in the vertical case as well).

Team Selection Test

May 15th - Day 1

1

Let $n \ge 2$ be an integer. There are $n$ beads numbered $1, 2, \ldots, n$. Two necklaces made out of some of these beads are considered the same if we can get one by rotating the other (with no flipping allowed). For example, with $n \ge 5$, the necklace with four beads $1, 5, 3, 2$ in the clockwise order is same as the one with $5, 3, 2, 1$ in the clockwise order, but is different from the one with $1, 2, 3, 5$ in the clockwise order. We denote by $D_0(n)$ (respectively $D_1(n)$) the number of ways in which we can use all the beads to make an even number (resp. an odd number) of necklaces each of length at least $3$. Prove that $n - 1$ divides $D_1(n) - D_0(n)$.

2

In a triangle $ABC$, with $\widehat{A} > 90^\circ$, let $O$ and $H$ denote its circumcenter and orthocenter, respectively. Let $K$ be the reflection of $H$ with respect to $A$. Prove that $K, O$ and $C$ are collinear if and only if $\widehat{A} - \widehat{B} = 90^\circ$.

3

For a positive integer $n$, a cubic polynomial $p(x)$ is said to be $n$-good if there exist $n$ distinct integers $a_1, a_2, \ldots, a_n$ such that all the roots of the polynomial $p(x) + a_i = 0$ are integers for $1 \le i \le n$. Given a positive integer $n$ prove that there exists an $n$-good cubic polynomial.

May 16th - Day 2

1

Find all functions $f$ from the set of real numbers to itself satisfying \[ f(x(1+y)) = f(x)(1 + f(y)) \] for all real numbers $x, y$.

2

An integer $a$ is called friendly if the equation $(m^2+n)(n^2+m)=a(m-n)^3$ has a solution over the positive integers. a) Prove that there are at least $500$ friendly integers in the set $\{ 1,2,\ldots ,2012\}$. b) Decide whether $a=2$ is friendly.

3

Players $A$ and $B$ play a game with $N \geq 2012$ coins and $2012$ boxes arranged around a circle. Initially $A$ distributes the coins among the boxes so that there is at least $1$ coin in each box. Then the two of them make moves in the order $B,A,B,A,\ldots $ by the following rules: (a) On every move of his $B$ passes $1$ coin from every box to an adjacent box. (b) On every move of hers $A$ chooses several coins that were not involved in $B$'s previous move and are in different boxes. She passes every coin to an adjacent box. Player $A$'s goal is to ensure at least $1$ coin in each box after every move of hers, regardless of how $B$ plays and how many moves are made. Find the least $N$ that enables her to succeed.

May 22nd - Day 3

1

For a positive integer $n$, a sum-friendly odd partition of $n$ is a sequence $(a_1, a_2, \ldots, a_k)$ of odd positive integers with $a_1 \le a_2 \le \cdots \le a_k$ and $a_1 + a_2 + \cdots + a_k = n$ such that for all positive integers $m \le n$, $m$ can be uniquely written as a subsum $m = a_{i_1} + a_{i_2} + \cdots + a_{i_r}$. (Two subsums $a_{i_1} + a_{i_2} + \cdots + a_{i_r}$ and $a_{j_1} + a_{j_2} + \cdots + a_{j_s}$ with $i_1 < i_2 < \cdots < i_r$ and $j_1 < j_2 < \cdots < j_s$ are considered the same if $r = s$ and $a_{i_l} = a_{j_l}$ for $1 \le l \le r$.) For example, $(1, 1, 3, 3)$ is a sum-friendly odd partition of $8$. Find the number of sum-friendly odd partitions of $9999$.

2

In a triangle $ABC$, let $I$ denote its incenter. Points $D, E, F$ are chosen on the segments $BC, CA, AB$, respectively, such that $BD + BF = AC$ and $CD + CE = AB$. The circumcircles of triangles $AEF, BFD, CDE$ intersect lines $AI, BI, CI$, respectively, at points $K, L, M$ (different from $A, B, C$), respectively. Prove that $K, L, M, I$ are concyclic.

3

Let $h \ge 3$ be an integer and $X$ the set of all positive integers that are greater than or equal to $2h$. Let $S$ be a nonempty subset of $X$ such that the following two conditions hold: if $a + b \in S$ with $a \ge h, b \ge h$, then $ab \in S$; if $ab \in S$ with $a \ge h, b \ge h$, then $a + b \in S$. Prove that $S = X$.

May 23rd - Day 4

1

A positive integer $a$ is called a double number if it has an even number of digits (in base 10) and its base 10 representation has the form $a = a_1a_2 \cdots a_k a_1 a_2 \cdots a_k$ with $0 \le a_i \le 9$ for $1 \le i \le k$, and $a_1 \ne 0$. For example, $283283$ is a double number. Determine whether or not there are infinitely many double numbers $a$ such that $a + 1$ is a square and $a + 1$ is not a power of $10$.

2

Let $n \ge 2$ be an integer and $f_1(x), f_2(x), \ldots, f_{n}(x)$ a sequence of polynomials with integer coefficients. One is allowed to make moves $M_1, M_2, \ldots $ as follows: in the $k$-th move $M_k$ one chooses an element $f(x)$ of the sequence with degree of $f$ at least $2$ and replaces it with $(f(x) - f(k))/(x-k)$. The process stops when all the elements of the sequence are of degree $1$. If $f_1(x) = f_2(x) = \cdots = f_n(x) = x^n + 1$, determine whether or not it is possible to make appropriate moves such that the process stops with a sequence of $n$ identical polynomials of degree 1.

3

In a triangle $ABC$, with $AB \ne BC$, $E$ is a point on the line $AC$ such that $BE$ is perpendicular to $AC$. A circle passing through $A$ and touching the line $BE$ at a point $P \ne B$ intersects the line $AB$ for the second time at $X$. Let $Q$ be a point on the line $PB$ different from $P$ such that $BQ = BP$. Let $Y$ be the point of intersection of the lines $CP$ and $AQ$. Prove that the points $C, X, Y, A$ are concyclic if and only if $CX$ is perpendicular to $AB$.