Let $n$ be a positive integer. In order to find the integer closest to $\sqrt n$, Mary finds $a^2$, the closest perfect square to $n$. She thinks that a is then the number she is looking for. Is she always correct?
Source:
Tags: inequalities
Let $n$ be a positive integer. In order to find the integer closest to $\sqrt n$, Mary finds $a^2$, the closest perfect square to $n$. She thinks that a is then the number she is looking for. Is she always correct?