In parallelogram $ABCD$, point $K$ is marked on diagonal $AC$. Circle $s_1$ passes through point $K$ and touches lines $AB$ and $AD$ ($s_1$ intersects the diagonal $AC$ for the second time on the segment $AK$). Circle $s_2$ passes through point $K$ and touches lines $CB$ and $CD$ ($s_2$ intersects for the second time diagonal $AC$ on segment $KC$). Prove that for all positions of the point $K$ on the diagonal $AC$, the straight lines connecting the centers of circles $ s_1$ and $s_2$, will be parallel to each other.