Problem

Source:

Tags: geometry, collinear



Given a circle $\omega$, a point $A$ lying inside $\omega$, and point $B$ ($B \ne A$). All possible triangles $BXY$ are considered, such that the points $X$ and $Y$ lie on $\omega$ and the chord $XY$ passes through the point $A$. Prove that the centers of the circumcircles of the triangles $BXY$ lie on the same straight line.