Points $O_1$ and $O_2$ are the centers of the circumscribed and inscribed circles of an isosceles triangle $ABC$ ($AB = BC$). The circumcircles of triangles $ABC$ and $O_1O_2A$ intersect at points $A$ and $D$. Prove that line $BD$ is tangent to the circumcircle of the triangle $O_1O_2A$.