Problem

Source:

Tags: geometry, areas, geometric inequality



Given triangle $A_0B_0C_0$. On the segment $A_0B_0$ points $A_1$, $A_2$, $...$, $A_n$, and on the segment $B_0C_0$ - points $C_1$, $C_2$, $...$, $Cn$ so that all segments $A_iC_{i+1}$ ($i = 0$, $1$, $...$,$n-1$) are parallel to each other and all segments $ C_iA_{i+1}$ ($i = 0$, $1$, $...$,$n-1$) are too. Segments $C_0A_1$, $A_1C_2$, $A_2C_1$ and $C_1A_0$ bound a certain parallelogram, segments $C_1A_2$, $A_2C_3$, $A_3C_2$ and $C_2A_1$ too, etc. Prove that the sum of the areas of all $n -1$ resulting parallelograms less than half the area of triangle $A_0B_0C_0$.