Problem

Source:

Tags: geometry, collinear, concurrency, concurrent



Let $ABC$ be a triangle such that $AB > AC$, with a circumcircle $\omega$. Draw the tangents to $\omega$ at $B$ and $C$ and these intersect at $P$. The perpendicular to $AP$ through $A$ cuts $BC$ at $R$. Let $S$ be a point on the segment $PR$ such that $PS = PC$. (a) Prove that the lines $CS$ and $AR$ intersect on $\omega$. (b) Let $M$ be the midpoint of $BC$ and $Q$ be the point of intersection of $CS$ and $AR$. Circle $\omega$ and the circumcircle of $\vartriangle AMP$ intersect at a point $J$ ($J \ne A$), prove that $P$, $J$ and $Q$ are collinear.