Let $ABC$ be a right triangle at $A$, and let $AD$ be the relative height to the hypotenuse. Let $N$ be the intersection of the bisector of the angle of vertex $C$ with $AD$. Prove that $$AD \cdot BC = AB \cdot DC + BD \cdot AN.$$
Source:
Tags: geometry
Let $ABC$ be a right triangle at $A$, and let $AD$ be the relative height to the hypotenuse. Let $N$ be the intersection of the bisector of the angle of vertex $C$ with $AD$. Prove that $$AD \cdot BC = AB \cdot DC + BD \cdot AN.$$