For non negative reals $a,b$ we know that $a^2+a+b^2\ge a^4+a^3+b^4$. Prove that $$\frac{1-a^4}{a^2}\ge \frac{b^2-1}{b}$$
Source:
Tags: algebra, inequalities
For non negative reals $a,b$ we know that $a^2+a+b^2\ge a^4+a^3+b^4$. Prove that $$\frac{1-a^4}{a^2}\ge \frac{b^2-1}{b}$$