Problem

Source:

Tags: algebra



Let $a_1, a2, . . . a_{2023}$ be $2023$ non-zero real numbers. Then, define $b_1, b_2, . . . , b_{2023}$ in the following way: $$b_1 = a_1 + a_2 + ... + a_{2023}$$$$b_2 =\sum_{1\le i_1 < i_2 \le2023} a_{i_1}a_{i_2} = a_1a_2 + a_1a_3 + a_1a_4 + ... + a_{2022}a_{2023}$$$$b_3 =\sum_{1\le i_1<i_2<i_3 \le2023} a_{i_1}a_{i_2}a_{i_3} = a_1a_2a_3 + a_1a_2a_4 + a_1a_2a_5 + ... + a_{2021}a_{2022}a_{2023}$$$$...$$$$b_{2023 }= a_1a_2a_3...a_{2023}$$It is known that $b_1, b_2, . . . , b_{2023}$3 are all negative. Amongst $a_1, a2, . . . a_{2023}$, $n$ of them are positive. Enter $n$ mod $1000$.