Problem

Source:

Tags: number theory, algebra, floor function



Let $s$ be the number of positive numbers that satisfy $$x\lfloor x\rfloor \{x\} + x = 4^{2023}.$$Enter $s$ mod $1000$. Note: $\lfloor x\rfloor$ denotes the greatest integer less than or equal to $x$, and $\{x\}$ denotes the fractional part of $x$, i.e. $x - \lfloor x\rfloor$.