Let $f(n)$ denote the largest positive integer $m$ such that $7^m$ divides $H(n)$ where $H(n) = 1^1 \cdot 2^2\cdot \cdot \cdot n^n$. As $n$ gets arbitrarily large, $f(n) \sim kn^2$. Enter $a^2 + b^2$ where $k = \frac{a}{b}$ , $a, b$ are positive integers and gcd$(a, b) = 1$. For those unfamiliar of $\sim$, equivalently $$k = \lim_{n \to \infty} \frac{f(n)}{n^2}$$
Problem
Source:
Tags: number theory
09.01.2024 02:59
Unrigorous \begin{align*} v_7(H(n))&=\frac12\sum_{i=1}^{\lfloor\log_7(n)\rfloor}\left(7^i\left(\left\lfloor\frac n{7^i}\right\rfloor^2+\left\lfloor\frac n{7^i}\right\rfloor\right)\right)\\ &\sim\frac12\sum_{i=1}^{\lfloor\log_7(n)\rfloor}\left(7^i\left(\left(\frac n{7^i}\right)^2\right)\right)\\ &\sim\frac{n^2}2\sum_{i=1}^{\log_7(n)}\left(7^i\right)\\ &\sim\frac{n^2}2\cdot\frac{49n-49}{6n} \end{align*}and we get $\frac{49}{12}$?
09.01.2024 05:42
@above not sure what you're doing in the last couple steps. Second last line, the summand should be $\frac{1}{7^i}$. And then this is $\sim\frac{1}{6}$. $k=\frac{1}{12}$ seems to match better with the graph.
11.01.2024 22:49
Assume $7\vert n$ since we don't care about divisibility much as $n \to \infty$. Then we only care about the terms $7^7, 14^14, ..., n^n$ Letting $n = 7a$, we take note of how $7^2 k$ contributes $2$ powers of $7$ and $7^3 k$ contributes $3$ powers and so on... to see that $f(n) = (7 + 14 + 21 + ... + 7a) + (49 + 98 + 147 + ...) + (7^3 + 2\cdot 7^3 + ...) = 7(\frac{(a)(a+1)}{2}) + 49(\frac{\frac{a}{7}(\frac{a}{7} + 1)}{2}) + ... \approx \frac12(7a^2 + a^2 + \frac{a^2}{7} + ...) = \frac12(\frac16 n^2) \Rightarrow \boxed{\frac{1}{12}}$. $\blacksquare$