Problem

Source:

Tags: number theory



Let $f(n)$ denote the largest positive integer $m$ such that $7^m$ divides $H(n)$ where $H(n) = 1^1 \cdot 2^2\cdot \cdot \cdot n^n$. As $n$ gets arbitrarily large, $f(n) \sim kn^2$. Enter $a^2 + b^2$ where $k = \frac{a}{b}$ , $a, b$ are positive integers and gcd$(a, b) = 1$. For those unfamiliar of $\sim$, equivalently $$k = \lim_{n \to \infty} \frac{f(n)}{n^2}$$