Problem

Source:

Tags: quadratics, algebra



The teacher wrote on the board the quadratic polyomial $x^2+10x+20$. Then in turn, each of the students came to the board and increased or decreased by $1$ either the coefficient at $x$ or the constant term, but not both at once. As a result, the quadratic polyomial $x^2 + 20x +10$ appeared on the board. Is it true that at some point a quadratic polyomial with integer roots appeared on the board?