The product $$\frac12 \cdot \frac24 \cdot \frac38 \cdot \frac{4}{16} \cdot ... \cdot \frac{99}{2^{99}} \cdot \frac{100}{2^{100}}$$is written in its most simplified form. What is the last digit of the denominator?
Source:
Tags: algebra
The product $$\frac12 \cdot \frac24 \cdot \frac38 \cdot \frac{4}{16} \cdot ... \cdot \frac{99}{2^{99}} \cdot \frac{100}{2^{100}}$$is written in its most simplified form. What is the last digit of the denominator?