Suppose $a_1 =\frac16$ and $a_n = a_{n-1} - \frac{1}{n}+ \frac{2}{n + 1} - \frac{1}{n + 2}$ for $n > 1$. Find $a_{100}$.
Problem
Source:
Tags: algebra, Sequence
BackToSchool
14.11.2021 17:45
FIFY parmenides51 wrote: Suppose $a_1 =\frac16$ and $a_n = a_{n-1} - \frac{1}{n}+ \frac{2}{n + 1} - \frac{1}{n + 2}$ for $n > 1$. Find $a_{100}$.
BackToSchool
14.11.2021 18:31
$$a_n - a_{n-1} = - \frac{1}{n}+ \frac{1}{n + 1} + \frac{1}{n + 1} - \frac{1}{n + 2}$$Apply telescope series.
Rewrite the recursion as
\begin{align*}
a_n - a_{n-1} &= - \frac{1}{n}+ \frac{2}{n + 1} - \frac{1}{n + 2}\\
&= - \frac{1}{n}+ \frac{1}{n + 1} + \frac{1}{n + 1} - \frac{1}{n + 2}
\end{align*}Then,
\begin{align*}
a_{1} &=\frac {1}{6} \\
a_{2} - a_{1} &= - \frac{1}{2}+ \frac{1}{3} + \cancel {\frac{1}{3} - \frac{1}{4}} \\
a_{3} - a_{2} &= \cancel { - \frac{1}{3}+ \frac{1}{4}} + \cancel {\frac{1}{4} - \frac{1}{5}} \\
a_{4} - a_{3} &= \cancel {- \frac{1}{4}+ \frac{1}{5} }+ \cancel {\frac{1}{5} - \frac{1}{6}} \\
......&...... \\
a_{n-1} - a_{n-2} &= \cancel {- \frac{1}{n-1}+ \frac{1}{n}} + \cancel {\frac{1}{n} - \frac{1}{n + 1}} \\
a_{n} - a_{n-1} &= \cancel { - \frac{1}{n}+ \frac{1}{n + 1}} + \frac{1}{n + 1} - \frac{1}{n + 2}
\end{align*}Add all above, and apply telescope series,
\begin{align*}
a_{n} &= \frac {1}{6} - \frac{1}{2}+ \frac{1}{3} + \frac{1}{n + 1} - \frac{1}{n + 2} \\
&= \frac{1}{(n+1)(n + 2)} \\
a_{100} &= \frac{1}{10302}
\end{align*}