Problem

Source:

Tags: algebra, geometry, combinatorics, number theory, indonesia juniors



p1. The parabola $y = ax^2 + bx$, $a < 0$, has a vertex $C$ and intersects the $x$-axis at different points $A$ and $B$. The line $y = ax$ intersects the parabola at different points $A$ and $D$. If the area of triangle $ABC$ is equal to $|ab|$ times the area of triangle $ABD$, find the value of $ b$ in terms of $a$ without use the absolute value sign. p2. It is known that $a$ is a prime number and $k$ is a positive integer. If $\sqrt{k^2-ak}$ is a positive integer, find the value of $k$ in terms of $a$. p3. There are five distinct points, $T_1$, $T_2$, $T_3$, $T_4$, and $T$ on a circle $\Omega$. Let $t_{ij}$ be the distance from the point $T$ to the line $T_iT_j$ or its extension. Prove that $\frac{t_{ij}}{t_{jk}}=\frac{TT_i}{TT_k}$ and $\frac{t_{12}}{t_{24}}=\frac{t_{13}}{t_{34}}$ p4. Given a $7$-digit positive integer sequence $a_1, a_2, a_3, ..., a_{2017}$ with $a_1 < a_2 < a_3 < ...<a_{2017}$. Each of these terms has constituent numbers in non-increasing order. Is known that $a_1 = 1000000$ and $a_{n+1}$ is the smallest possible number that is greater than $a_n$. As For example, we get $a_2 = 1100000$ and $a_3 = 1110000$. Determine $a_{2017}$. p5. At the oil refinery in the Duri area, pump-1 and pump-2 are available. Both pumps are used to fill the holding tank with volume $V$. The tank can be fully filled using pump-1 alone within four hours, or using pump-2 only in six hours. Initially both pumps are used simultaneously for $a$ hours. Then, charging continues using only pump-1 for $ b$ hours and continues again using only pump-2 for $c$ hours. If the operating cost of pump-1 is $15(a + b)$ thousand per hour and pump-2 operating cost is $4(a + c)$ thousand per hour, determine $ b$ and $c$ so that the operating costs of all pumps are minimum (express $b$ and $c$ in terms of $a$). Also determine the possible values of $a$.