Let $x$ and $y$ be positive real numbers with $x + y =1 $. Prove that $$\frac{(3x-1)^2}{x}+ \frac{(3y-1)^2}{y} \ge1.$$For which $x$ and $y$ equality holds? (K. Czakler, GRG 21, Vienna)
Problem
Source:
Tags: function
03.10.2021 12:51
parmenides51 wrote: Let $x$ and $y$ be positive real numbers with $x + y =1 $. Prove that $$\frac{(3x-1)^2}{x}+ \frac{(3y-1)^2}{y} \ge1.$$For which $x$ and $y$ equality holds? (K. Czakler, GRG 21, Vienna) ALBANIA - 2015 https://artofproblemsolving.com/community/c6h1664258p16611930 $$\frac{(3a-1)^2}{a}+\frac{(3b-1)^2}{b}\geq \frac{(|3a-1|+|3b-1|)^2}{a+b}\geq (3a-1+3b-1)^2=1$$ Let $x,y>0,x+y=1$ .Prove that $$\frac{(3x - 1)^2}{y}+\frac{(3y-1)^2}{x}\geq 1$$$$\frac{(3x - 1)^2}{2y}+\frac{(3y-1)^2}{x}>\frac{1}{2}$$
03.10.2021 13:12
sqing wrote: parmenides51 wrote: Let $x$ and $y$ be positive real numbers with $x + y =1 $. Prove that $$\frac{(3x-1)^2}{x}+ \frac{(3y-1)^2}{y} \ge1.$$For which $x$ and $y$ equality holds? (K. Czakler, GRG 21, Vienna) ALBANIA - 2015 https://artofproblemsolving.com/community/c6h1664258p16611930 $$\frac{(3a-1)^2}{a}+\frac{(3b-1)^2}{b}\geq \frac{(|3a-1|+|3b-1|)^2}{a+b}\geq (3a-1+3b-1)^2=1$$ Let $x,y>0,x+y=1$ .Prove that $$\frac{(3x - 1)^2}{y}+\frac{(3y-1)^2}{x}\geq 1$$$$\frac{(3x - 1)^2}{2y}+\frac{(3y-1)^2}{x}>\frac{1}{2}$$ $\frac{(3x-1)^2}{y}+\frac{(3y-1)^2}{x}\geq \frac{(|3x-1|+|3y-1|)^2}{y+x}\geq (3x-1+3y-1)^2=1$ $\frac{(3x-1)^2}{2y}+\frac{(3y-1)^2}{x}\geq \frac{(|3x-1|+|3y-1|)^2}{2y+x}> \frac{(|3x-1|+|3y-1|)^2}{2y+2x}\geq \frac{(3x-1+3y-1)^2}{2}=\dfrac{1}{2}$
03.10.2021 13:39
04.10.2021 06:08
Let $x,y>0,x+y=4$ .Prove that $$\frac{(2x+1)^2}{x}+\frac{(2y+1)^2}{y}\geq 25$$
04.10.2021 06:39
These can also be solved by Jensen.
04.10.2021 17:49
Let $x,y,z$ be positive real numbers with $x + y+z =1 $. Prove that $$ \frac{(2x-1)^2}{x}+ \frac{(2y-1)^2}{y} + \frac{(2z-1)^2}{z} \ge 1$$$$\frac{(2x-1)^2}{y}+ \frac{(2y-1)^2}{z} + \frac{(2z-1)^2}{x} \ge 1$$
Attachments:

10.02.2024 09:25
parmenides51 wrote: Let $x$ and $y$ be positive real numbers with $x + y =1 $. Prove that $$\frac{(3x-1)^2}{x}+ \frac{(3y-1)^2}{y} \ge1.$$For which $x$ and $y$ equality holds? (K. Czakler, GRG 21, Vienna)
10.02.2024 12:55
Let $ x , y >0 $ and $x + y =1 $. Prove that $$\frac{(3x-1)^2}{x}+ \frac{(3y-1)^2}{y} +xy\geq \frac{5}{4}$$
10.02.2024 13:15
Let $ x , y >0 $ and $x + y =1 $. Prove that $$\frac{(3x-1)^2}{x}+ \frac{(3y-1)^2}{y} + kxy\geq \frac{k^2+4}{4}$$ https://artofproblemsolving.com/community/u488422h3253461p29869075
10.02.2024 15:13
10.02.2024 15:13
Let $ x , y >0 $ and $x + y =1 $. Prove that $$\frac{(2x-3)^2}{x}+ \frac{(2y-3)^2}{y} +144xy\geq 52$$
10.02.2024 18:31
sqing wrote: Let $ x , y >0 $ and $x + y =1 $. Prove that $$\frac{(2x-3)^2}{x}+ \frac{(2y-3)^2}{y} +144xy\geq 52$$ $$LHS-RHS=\frac{9(2x-1)^4}{x(1-x)}\ge0$$
11.02.2024 05:04
11.02.2024 10:57
sqing wrote: Let $ x , y >0 $ and $x + y =1 $. Prove that $\frac{(2x-3)^2}{x}+ \frac{(2y-3)^2}{y} +144xy\geq 52$
11.02.2024 17:28
29.08.2024 06:04
By Bergstroms inequality we obtain that $\frac{(3x-1)^{2}}{x} +\frac{(3y-1)^{2}}{y} \geq \frac{(3x-1+3y-1)^{2}}{x+y}=1$. The equality case is obtained when x=y, since x+y=1 this means that $x=y=\frac{1}{2}$
01.09.2024 22:05
$\frac{(3x-1)^2}{x}+\frac{(3y-1)^2}{y}\geq\frac{(3x+3y-2)^2}{x+y}=1$