Inside the rectangle $ABCD$ is taken a point $M$ such that $\angle BMC + \angle AMD = 180^o$. Determine the sum of the angles $BCM$ and $DAM$.
Problem
Source:
Tags: geometry, rectangle, angles
27.07.2021 16:10
\bump \bump
27.07.2021 16:26
Is it not $90^\circ$?
27.07.2021 17:47
is it $180^\circ$
27.07.2021 19:04
Let $A(0,0),B(b,0),C(b,c),D(0,c)$; choose $M(m,n)$. $\tan \angle BMC=\tan \alpha=-\frac{c(m-b)}{(m-b)^{2}+n(n-c)}$ and $\tan \angle AMD=\tan \beta=\frac{cm}{m^{2}+n(n-c)}$. $\alpha+\beta=180^{\circ}$, then $\tan \beta=\tan(180^{\circ}-\alpha=-\tan \alpha$, giving $\frac{cm}{m^{2}+n(n-c)}=\frac{c(m-b)}{(m-b)^{2}+n(n-c)}$, after calculating $(m-b)m=n(n-c)$. The five points lie on an hyperbola $x^{2}-y^{2}-bx+cy=0$. $\tan \angle MAD=\tan y=\frac{m}{n}$ and $\tan \angle MCB=\tan x=\frac{m-b}{n-c}$. $\tan(x+y)=\frac{\frac{m-b}{n-c}+\frac{m}{n}}{1-\frac{m-b}{n-c} \cdot \frac{m}{n}} \Rightarrow x+y=90^{\circ}$.
06.07.2022 23:01
bump... Is there a clean solution? I think reflecting M over the midsegment of the rectangle could be useful...
07.07.2022 07:38
At the time, I had a fakesolve, and still do.
07.07.2022 07:48
ok i finally found a solution which I think should work
07.07.2022 08:06