A circle centered at a point $(0, 1)$ on the coordinate plane intersects the parabola $y = x^2$ at four points: $A, B, C, D.$ Find the largest possible value of the area of the quadrilateral $ABCD$.
Source:
Tags: geometry, max, geometric inequality, analytic geometry, parabola, area
A circle centered at a point $(0, 1)$ on the coordinate plane intersects the parabola $y = x^2$ at four points: $A, B, C, D.$ Find the largest possible value of the area of the quadrilateral $ABCD$.