Problem

Source:

Tags: geometry, geometric inequality



Let $h_a,h_b,h_c$ be the altitudes, and let $m_a,m_b,m_c$ be the medians of the acute triangle drawn to the sides $a, b, c$ respectively. Let $r$ and $R$ be the radii of the inscribed and circumscribed circles. Prove that $$\frac{m_a}{h_a}+\frac{m_b}{h_b}+\frac{m_c}{h_c} <1+\frac{R}{r}.$$