Problem

Source:

Tags: geometry, Triangles



There are given a triangle and some internal point $P$. $x,y,z$ are distances from $P$ to the vertices $A,B$ and $C$. $p,q,r$ are distances from $P$ to the sides $BC,CA,AB$ respectively. Prove that: $$xyz\ge(q+r)(r+p)(p+q).$$