Prove that for every four positive numbers $a,b,c,d$ the following inequality is true: $$\sqrt{\frac{a^2+b^2+c^2+d^2}4}\ge\sqrt[3]{\frac{abc+abd+acd+bcd}4}.$$
Source:
Tags: inequalities
Prove that for every four positive numbers $a,b,c,d$ the following inequality is true: $$\sqrt{\frac{a^2+b^2+c^2+d^2}4}\ge\sqrt[3]{\frac{abc+abd+acd+bcd}4}.$$